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This paper outlines the methodologies that can be
used to perform an intelligent analysis of diabetic
patients’ data, realized in a distributed management
context. We present a decision-support system archi-
tecture based on two modules, a Patient Unit and a
Medical Unit, connected by telecommunication ser-
vices. We stress the necessity to resort to tempo-
ral abstraction techniques, combined with time se-
ries analysis, tn order to provide useful advice to
patients; finally, we outline how data analysis and
interpretation can be cooperatively performed by the
two modules.

INTRODUCTION

The crucial role of Intensive Diabetes Therapy (IDT)
in delaying or preventing the development of long-
term complications of Insulin Dependent Diabetes
Mellitus (IDDM) has been recognized in several re-
cent studies [1]. On the other hand, the negative
implications of IDT implementation in daily patients
management basically consist in increasing the risk
of severe hypoglycemia and in the potential increase
of the costs of the therapy, due to the continuous
assistance required. These two negative features
could be avoided by exploiting current advances of
information technologies, particularly telecommuni-
cations networks and knowledge-based systems. Like
other authors [2, 3], we believe that effectiveness and
safety of IDT could be increased if the rate of infor-
mation transmission between patients and clinicians
were increased; moreover, we believe that patients
should be involved in their own therapy manage-
ment, through a careful home assistance provided
by a cooperation between patients and physicians.
Such cooperation can be effectively implemented in
a distributed environment for patient care [4].

The above mentioned motivations and previous
experiences [2], led to the definition of the T-IDDM
(Telematic Management of Insulin-Dependent Dia-
betes Mellitus) project[4, 5, 6].

0195—4210/96/$5.00 © 1996 AMIA, Inc.

In the T-IDDM architecture the IDDM patient man-
agement is divided into several subtasks, that are
implemented by two basic components: a Patient
Unit (Pu) and a Medical Unit (MU), interconnected
by a telecommunication system. The MU is designed
to assists the physician in defining a treatment pro-
tocol, by suggesting insulin regimen, diet and phys-
ical exercise, through a periodic evaluation of pa-
tient’s data. The treatment protocol is then com-
municated to the PU in order to bind the space of
its admissible actions. The PU assists the patients in
their self-monitoring activity, by giving proper ther-
apeutic advice, such as insulin dosage adjustments.
Moreover, the PU deals with automatic data collec-
tion and transmission from the patient’s house to
the clinic, by communicating the therapeutic actions
and the current metabolic state. The telecommuni-
cation system relies on an HTTP server, developed in
Common Lisp; hence, the integration of the reason-
ing tools that constitute the MU is based on the HTTP
protocol, while user interaction takes place using the
HTML language [7].

In this paper we will describe the data interpre-
tation and plan revision tasks performed by the two
modules and we will show how the cooperation and
coordination between the modules can be useful to
efficiently and effectively assist patients and physi-
cians in making decisions.

THE PROBLEM

In order to understand the complexity of IDDM pa-
tient’s data analysis let us consider Fig. 1. The dis-
played Blood Glucose Level (BGL) time series comes
from the home monitoring of a 20 year old male IDDM
patient. The patient underwent three insulin injec-
tions per day, at breakfast, lunch and dinner time,
respectively. The insulin injections at breakfast and
dinner were a mixture of regular and NPH (inter-
mediate) insulin. BGL measurements are performed
before meals, as required by the Diabetologic Unit
of the Pavia University Medical School. The mean
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Figure 1: BGL values and insulin doses over a period
60 days (see text).

of BGL measurements over two months was 182.7
mg/dl while the standard deviation was 60 mg/dl.
Only a nominal diet plan was known, and there is
no assurance that it was actually followed on each
day. The patient gave only qualitative information
on the physical exercise performed. The time se-
ries is highly unstable and on the basis of the avail-
able data it was neither possible to derive significant
causal models nor to obtain reliable estimates of the
parameters of mathematical models describing BGL
or insulin dynamics. In clinical practice, this kind of
situation is unfortunately very frequent; in order to
determine whether a computerized distributed sys-
tem is able to provide useful advice to patients and
physicians in such a context, it is hence necessary
to answer two fundamental questions: What kind of
information do physicians need from a system able
to automatically analyze this kind of data? How it
is possible to use such low quality information to
help patients in properly and safely modifying their
therapy?

METHODS

From a functional point of view, the two units of
T-IDDM architecture (PU and MU) cooperate to per-
form a hierarchical adaptive control system of the
metabolic state of IDDM patients [5]. We will now
describe a complete control cycle, from the assess-
ment of the therapeutic protocol to its revision in
response to changes in the patient’s status, in order
to highlight what methodologies are used to analyze
the data, and how their results are exploited by the

two modules.

Protocol assessment

In current medical practice, the patient diary is re-
vised and a new therapeutic protocol is assessed only
when a patient undergoes the periodic control visit.
On the contrary, the MU is able to dynamically sug-
gest to the physicians a protocol updating, by com-
bining the home monitoring data coming from the
PU with the historical information stored in the pa-
tient data base. The MU knowledge-based system
relies on an ontology of IDDM and on a number of
inference mechanisms [6] to perform a three step
procedure: a data interpretation task extracts high-
level metabolic and statistical parameters from the
individual measurements; a reasoning task applies a
logic-based belief-maintenance algorithm in order to
evaluate the state of the patient and a decision task
exploits the results of the first two tasks to choose or
to adjust a protocol using heuristic or model-based
techniques.

In order to allow a proper interpretation of the
data, the MU subdivides the 24-hour daily period
into a set of consecutive non-overlapping time slices.
These time slices are generated on the basis of the
information about the patient’s life style, in partic-
ular the meal times. The possible adjustments are
then selected using the concept of competent time
slice: an action in a certain time slice will be compe-
tent for the BGL measurements in the time slices that
it directly affects. For example, an intake of regu-
lar insulin will be competent for the time slices that
cover the subsequent six hours. Therefore, when a
problem is detected in a particular time slice ¢, the
possible adjustments will be the ones affecting the
actions in the time slices that are competent over .

This information is used by the MU to suggest a
new therapeutic protocol, that is passed to the pu.
The protocol is composed of suggested actions (in-
sulin intakes, diet, exercise) with their competent
time slices, and of the PU control tables, that specify
the strategies for coping with dangerous situations
in the different time slices [6].

Patient advice

The PU has two fundamental requirements: it must
react to dangerous events in a fast and proper way
and it must be able to provide suggestions relying
on limited computational capabilities. The reason-
ing procedures that it uses to give therapeutic sug-
gestions are guided and pre-determined by the Mu
through the control tables transmitted along with
the therapeutic protocol. A definition of control ta-
bles, based on meal intakes and measured and pre-
dicted BGLs, has been previously proposed by the au-
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Figure 2: The three patterns derived from RAE anal-
ysis: a) stationary pattern; b) increasing pattern; c)
decreasing pattern

thors [5]; this approach is able to explicitly take into
account inter- and intra-individual variability. Nev-
ertheless, when the self-monitoring data contain only
BGL and glycosuria values, while meals and physical
exercise are only approximatively known, the control
tables should be based on more robust techniques [8];
in particular, we are currently designing control ta-
bles that rely on a cooperative data analysis between
the PU and the MU.

At the PU level, we are now considering a sim-
ple and efficient technique that exploits the Running
Average calculation to detect stable trends in BGL
time series. Given a generic unidimensional time
series, the basic Running or Moving Average Esti-
mate (RAE) for an observation is computed by cal-
culating the average over the k preceding values; k is
called the running average length. Modifications of
the basic technique able to take into account linear
trends in time can be found in [9]. This technique is
useful to detect local trend components in the BGL
time series, exploiting two different RAEs. The first
RAE (long-time RAE, LT-RAE) has a large value of k,
and therefore provides smooth estimates of the local
trend; the second RAE (short-time RAE, ST-RAE) has
a smaller value of the RA length, and is hence more
sensitive to the BGL deviation from the overall mean.

The relationships between the two curves identify
three different patterns (see Fig. 2): a stationary
pattern a), an increasing trend pattern b) and a de-
creasing trend pattern c). Patterns b) and c) show
an abrupt change in the ST-RAE derivative, and are
characterized by a crossing point after which the sT-
RAE is persistently higher or lower, respectively, than
the LT-RAE. When applied to BGL time series, pat-

tern recognition may be effectively carried out by
means of temporal abstractions, performed at the PU
level. The parameters that characterize the tempo-
ral abstractions are determined by the MU; in par-
ticular the MU must assess a minimum persistence
time span, used to detect pattern b) and c), as well
as the ST-RAE and LT-RAE lengths.

RAE analysis is particularly useful if measurements
coming from different time slices are considered as
separate time series. As a matter of fact, if the pa-
tient metabolism is stable, the overall BGL values
show a cyclo-stationary behavior, with oscillations
around a daily trajectory. By considering separate
time series the daily periodical component of the
measurements is filtered out, and it is hence eas-
ier to detect local problems in a particular time slice
and to suggest the appropriate control actions.

The PU suggestions are related to two different
therapy adjustments. The first one is based on the
present BGL value, and attempts to react against
dangerous instantaneous situations (for example, by
modifying a single regular insulin dose or delaying
a meal). The second therapy adjustment is based
on the above described detection of local BGL trends
and on a set of control tables. Each table is based on
three inputs: the ST-RAE, the current sT- and LT-
RAE patterns and the glycosuria level. The table out-
put is a control action that deals with non-stationary
behaviors by suggesting a permanent modification to
the most competent protocol action for the identi-
fied problem (for example, changing an NPH insulin
dose). A different control table is generated by the
MU for each time slice, according to the constraints
imposed by patient’s life styles.

It is important to notice that the application of
a control action of the second type may be delayed
until the MU confirms it. This can happen when
the PU generates advice that may lead to hypo-
glycemic episodes; for example, when the PU sug-
gests an insulin increase due to an increasing BGL
pattern, but isolated hypoglycemic events have also
been observed. Moreover, before modifying the pro-
tocol, the MU may also require additional laboratory
parameters, like the HbA1C value.

Figures 3 and 4 show an example of the applica-
tion of the RAE method to the data of a single time
slice. In this case we analyzed the series of Before
Breakfast BGL (BB-BGL) measurements of the data
displayed in Fig. 1.

The BGL values increase significantly after day 30,
although the variance is still very high. The ST-RAE
is calculated with an RA length of 7 days, and the LT-
RAE is calculated with an RA length of 21 days; the
two curves allow for a straightforward interpretation
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Figure 3: BB-BGL values over 60 days. An increasing
trend after day 30 is clearly identifiable
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Figure 4: RAEs with running average length of 7 days
(dotted line) and 21 days (continuous line)

of the different local patterns in the 60 days follow-
up period. If patterns b) and c) are identified with a
persistence of at least 4 days without intersection be-
tween the two curves, we detect two non-stationary
patterns: the first one, of type c), from day 10 to 22,
and the second one, of type b), from day 30 to 56.

This technique, used for retrospective analysis of
6 patients monitored over 6 months, detected 98
instances of non-stationary patterns, 95 of which
were judged to be clinically significant. The rele-
vant episodes were detected in advance with respect
to visual inspection by the physician, and the results
obtained were often easier to interpret than the ones
derived with more sophisticated techniques [5]. We
are now evaluating the RAE technique in comparison
with other low-computational-cost methods, such as
piecewise linear autoregressive models.

Protocol revision

The PU and the MU work asynchronously, since the
PU is not continuously connected with the Mu, and,
although periodical communications are required, it
is not a-priori known when the PU will transmit the
data to the MU. Whenever a dangerous condition,
such as an episode of non-stationarity, is detected,
the PU may suggests protocol revisions: the modi-
fied protocol must nevertheless be checked and con-
firmed by the MU. When a new connection is estab-
lished, the PU sends the data analysis results to the
MU, together with the monitoring data and the sug-
gested actions. The MU will check the adequacy of
the actions by applying a number of available data
abstraction methods.

In particular, Temporal Abstractions (TA) have
been recognized to be of fundamental importance in
order to help data interpretation [10]. The TA mech-
anisms adopted at MU level have been described in
a different application context [11]. Following the
TA ontology used in [11] and according to the do-
main medical knowledge, we defined a set of relevant
critical situations that may be efficiently recognized
through TA. A subset of the TAs defined for the
breakfast time-slice is'shown in the following table:

TA type | Temporal Abstractions

state hypoglicemia, hyperglycemia,
glycosuria, extra physical exercise

trend BGL increase, BGL decrease,
BGL stationarity

complex | Somogy effect, Dawn effect,
improper patient action

The complex TAs reported in the table are used
to detect critical situations, represented by different
combinations of glycosuria, BGL, and life-style indi-
cator values. Somogy effect, defined as a response
to hypoglycemia while asleep with counter regula-
tory hormones causing morning hyperglycemia, is
detected by looking for “hyperglycemia at breakfast
with absence of glycosuria”; Dawn effect, a morning
hyperglycemia unrelated to nightly hypoglycemia, is
detected by searching for “hyperglycemia at break-
fast with presence of glycosuria”, and finally, Im-
proper Patient Action refers to hypoglycemia or hy-
perglycemia episodes caused by a wrong protocol im-
plementation (e.g. an unpredictable change of the
life style or an insulin dose delivery error).

The derived TAs are exploited by the reasoning
module of the MU to confirm or reject the proto-
col adjustments suggested by the Pu. After being
approved and possibly modified by physicians, the
inference result is transmitted back to the PU in the
form of a revised protocol.
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Figure 5: Temporal abstractions for the breakfast
time slice

In the example described above, after day 30 the
PU would suggest an increase of the insulin dose com-
petent for the Breakfast Time Slice, i.e. NPH insulin
delivered at dinner. Nevertheless, the occurrence of
a hypoglycemic episode at day 32 would force the pu
to suggest a life-style check while waiting for the MU
modification of the therapeutic protocol. By analyz-
ing the data from day 30 to 45, the MU could detect
a persistent Dawn effect following the hypoglycemic
episode, together with isolated cases of Somogy ef-
fect (see Fig. 5). Instead of accepting the PU sug-
gestion, the MU would therefore propose a protocol
modification, in which the NPH injection is delayed
to bed time to reduce the risk of night hypoglycemia,
and submit it to the physician for approval.

DISCUSSION AND FURTHER RESEARCH

In this paper we have shown a part of the method-
ologies that will be involved in the definition of a
system for telematic management of IDDM patients.
We addressed two important problems related to the
analysis of patient data and their use for therapeutic
purposes: we showed that a system able to automat-
ically perform time series analysis and temporal ab-
stractions can provide useful support to physicians
also in the presence of low-quality data, and that
the cooperation between two distinct control mod-
ules may help patients in properly and safely modi-
fying their therapy. The ideas here presented will be
fully integrated in a prototypical system that is be-
ing implemented within the T-IDDM EU project, and
will be evaluated during the demonstration phase of
the project.
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